US009436615B2

a2 United States Patent

Gorobets

US 9,436,615 B2
Sep. 6, 2016

(10) Patent No.:
45) Date of Patent:

(54)

(71)

(72)

(73)

")

@

(22)

(65)

(1)

(52)

(58)

OPTIMISTIC DATA READ

Applicant: SanDisk Technologies Inc., Plano, TX

(US)

Inventor: Sergey Anatolievich Gorobets,
Edinburgh (GB)

Assignee: SanDisk Technologies LL.C, Plano, TX
(US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

Appl. No.: 14/506,124

Filed: Oct. 3, 2014

Prior Publication Data

US 2016/0098355 Al Apr. 7, 2016

Int. CL.

GO6F 12/10 (2006.01)

GO6F 12/02 (2006.01)

U.S. CL

CPC GO6F 12/10 (2013.01); GOG6F 12/0246

(2013.01); GOGF 12/1009 (2013.01); GO6F
2212/1024 (2013.01); GO6F 2212/152
(2013.01)
Field of Classification Search
CPC . GO6F 12/0246; GOGF 12/10; GOGF 12/1009
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS
2006/0282644 Al* 12/2006 Wong GO6F 12/0246
711/206

GO6F 12/0862
711/104

2013/0246696 Al* 9/2013 Woodward

FOREIGN PATENT DOCUMENTS

EP
WO

1426 866 Al
WO 2010/078545 Al

6/2004
7/2010

* cited by examiner

Primary Examiner — Hal Schnee
(74) Attorney, Agent, or Firm — Brinks Gilson & Lione

57 ABSTRACT

A storage module may include a controller that is configured
to perform a read operation to read data stored in at least one
memory, where the data is associated with logical address
information. In order to perform the read operation, the
controller may be configured to retrieve a preliminary physi-
cal address associated with the logical address information,
and initiate a data retrieval process for a first version of the
data stored at the preliminary physical address prior to
confirming a final physical address associated with the
logical address information.

26 Claims, 9 Drawing Sheets

500
[dentify Togical source /
502 address information
508
Retrieve initial preliminary physical _
504 ~ i Initiate data
IPPA) b first set
address (|) by querying fi retrioval,
Determine final I Perform 7]
physical add| » pre-sensing with | 1
(FPA) |
i
]
506 :
)
1
i
512 |
Terminate and Re- t
516 ~— perform pre-sensing !
with FPA (SPPA) -

Perform
sensing with
FPA (SPPA)

518~

Perform Data
Transfer with
FPA (SPPA}

520 —

Perform Post Data
Transfer
Operations

522

.
:
]
;
1
Wait until !
FPAis !
determined |
- — I
[} i
: |
! |
Perform Data ! i
Transfer with | =~~~ !
[-
5

528

US 9,436,615 B2

Sheet 1 of 9

Sep. 6, 2016

U.S. Patent

L '©ld
Aowsiy Aiowsipy
urepy Aepuoossg
el oct
SINPON Aowsy
AioussN alemuil4 BT |(edi181e%g)
el 0cl gl
H | @w ! ! }
AinoudD Aninosin aoelsiu| 10S58001d aoeLBU|
osueg |lw»| 01607 -l AIOWSIN =T 1SOH
Yyl vl sng il oIl
SINPON Aowsiy J8][04u0D
ocl OIT

weisAg
1SOH

a|npol\ sbeloig

c0l

U.S. Patent Sep. 6, 2016 Sheet 2 of 9 US 9,436,615 B2

Logical Group LGi lO | 1 | |k ‘k+1‘ |N-1|

Physical Group VB!
]

(Metablock) [o T[Tk fer] - [N

MBi [k [ket] - [N1] 0 [1 |- {k1]

FIG. 2

U.S. Patent

Sep. 6, 2016 Sheet 3 of 9 US 9,436,615 B2

Logical Address Range 302

7
b
LBAC...
g % %1
| ?w"' ' Divided to Logical Groups (LGs)
:;’E: LGO/ALGT %LGZ [VLGS e —VLGX LGx+17}LGx+2 LGx+32r— -—%j
| ' rd 2 i
(S | | | I | i
o i i | | I 304
E Lo | Binary Cache Indices (BCls) !

[r—a
| v ¥ v v ¥ \
: : BCIO BCI BCI2 BCI3 BCl4 b e BCIn :E :

! T
| | — 1
by ' ! ? f !

Lo : : Logical Group bitmap (0=no fragmenis in Binary cache)
Iy 306
: | | I t : | i e

1N N4 (ol
ja <
£ v, %) F220 324 —F!

| [
| ©

= |

:g | Binary Cache Indices (BCis) cache

:§ | BCIO BGI1 BCI2 BCI3 =

l i % X+

: E: r‘a‘gﬁ:;?t jfr;gGrr)l(;its; |_I ;{/fra:ﬁemsaEfr:gme:tsj} 312 : é :

H L
| |

L - 310 :

{

o 310 v132

| : i Data Fra nts in Bjpary Cache Blocks

o :

I

[;
Loy
|] l ! I 1
- | | | ! | |

: : : Légical Group Addref.s table (GAT) pages : .
[A4 ¥ 4 ‘rE X
R 27— — — — — T &
LE | ‘L -
i é‘i GAT page cache 314 .
I S =
5 EEWATITA 07007) H

| S

: % : Update|or Intact Block & 318
i |
L@ | v 3 | R
= | |
: E 46/// /LG1//LGZ /63 L Gx /LGx+1/LGx+2 LG :E !
:___I / / / [

FIG. 3

U.S. Patent Sep. 6, 2016 Sheet 4 of 9 US 9,436,615 B2

101
Host System
102
| Storage
420 Module
Host
Controller 430
<+— = other functionality
modules
FIG. 4A
101
Host System
445 102
Host > Storage
Controller module

FIG. 4B

U.S. Patent Sep. 6, 2016 Sheet 5 of 9 US 9,436,615 B2

500
Identify logical source /
502~ address information
508
Retrieve initial preliminary physical _
504 " address (IPPA) by querying first set Initiate data
retrieval,
Determine final Perform B
physical address |« e pre-sensing with
(FPA) IPPA

506
No

Y 512
Terminate and Re- | |

516 — perform pre-sensing

,
i
|
:

s w

510 |
:
i
|
|
|
|
1
|
|
|
|
_'

with FPA (SPPA)

> sensing |-
I with IPPA
Perform
518 — sensing with 524
FPA (SPPA) No
1
Perform Data :
520 — Transfer with ¢ '
FPA (SPPA) ' Yes No rjﬁo :
| \
I Wait until | !
Perform Post Data : FPAis |
Operations f‘ |
t
A v E E
Perform Data Jl |
Transfer with [~~~ |
IPPA - ———— - — = -
5

FIG. 5 528

U.S. Patent Sep. 6, 2016 Sheet 6 of 9 US 9,436,615 B2

506
Retrieve Second Set /
607
600 - of Data Structures 2
Determine that
Query Second Set .
602~ of Data Structures FPAis the SPPA
604 .
Second // \\ 608
preliminary 7 < e |
physical Yes | o SPPAand v No i Determine that
address “\IPPA match? - | FPA s the SPPA |
(SPPA) ID'd? . 4

N s
N Ve
N /

Determine that
FPA is the IPPA

)

606

FIG. 6

US 9,436,615 B2

Sheet 7 of 9

Sep. 6, 2016

U.S. Patent

V. 9ld
AJOWBN
€l
ssaippe ainponis
Aeulwigid e | | eleg SSaIppyY
paliols eleq Aiepuooeg
807 907
81 puooes {1g 18t
07 207
jouueyn jpuuByD
puooesg ém
A9 0L
Jajjonuon
[

snpoiy abelioig
201

US 9,436,615 B2

Sheet 8 of 9

Sep. 6, 2016

U.S. Patent

d/ 9ld
Aowey
A
ssalppe aJnpnis
Areuiuiaid 1e ele(sselppy
paJols ereq Aepuodsg
iz 90Z
8I(puodSs 2Ig 1sdid
v0Z [
[puueyD [puUEyd
pU029S gn_
ZLL 0LZ
Jsjjonuon
[

ainpon ebelois
201

US 9,436,615 B2

Sheet 9 of 9

Sep. 6, 2016

U.S. Patent

8 'Ol

aINPoOnN
soBIDIU|
Alows
908

|npo

dnyo01

SSaIppVY
%08

A

Y

3INPON
pesy
eled
208

aINpoN
aoeyaU|
1SOH

90

Jg|jonuo)

oLl

US 9,436,615 B2

1
OPTIMISTIC DATA READ

BACKGROUND

Storage modules may manage data storage in response to
host commands received from a host. When a host read
command is received, the storage module may determine a
physical location at which data associated with the host read
command is stored. For some configurations, the storage
module may convert host address information included in
the host read command to physical address information that
identifies the physical location. The storage module may use
multiple tables or other address data structures to map the
host address information with the physical address informa-
tion.

SUMMARY

Embodiments of the present invention are defined by the
claims, and nothing in this section should be taken as a
limitation on those claims. By way of example, the embodi-
ments described in this document and illustrated in the
attached drawings generally relate to a storage module and
related methods of a controller that executes context com-
mands on a communications bus in accordance with a cache
sequence while a memory module performs internal
memory operations.

In one example, a storage module may include at least one
memory and control circuitry in communication with the at
least one memory. The control circuitry may include a
plurality of modules configured to perform a read operation
to read data stored in the at least one memory. The plurality
of modules may include an address lookup module config-
ured to: identify logical address information associated with
the data; and retrieve a preliminary physical address asso-
ciated with the logical address information from a first set of
a plurality of address data structures, where the plurality of
address data structures includes a primary address data
structure and at least one secondary address data structure,
and where the first set includes at least the primary address
data structure. The address lookup module may also be
configured to confirm a final physical address associated
with the logical address information, where the confirmation
is based on a query of a second set of the plurality of address
data structures, and where the second set includes one or
more of the at least one secondary address data structure.
The plurality of modules may further include a data read
module configured to: initiate a data retrieval process for a
first version of the data prior to confirmation of the final
physical address by the address lookup module, where the
first version of the data is stored at the preliminary physical
address. When the final physical address matches the pre-
liminary physical address, the data read module may be
configured to complete the read operation using the first
version of the data. In addition, when the final physical
address does not match the preliminary physical address, the
data read module may be configured to terminate the initi-
ated data retrieval process and initiate a subsequent data
retrieval process for a second version of the data stored at the
final physical address.

In another example, a method of accelerating a logical-
to-physical address translation may include: performing the
following in a storage module having at least one memory:
receiving, from a host system, a host request identifying
logical address information for data stored in the at least one
memory; reading a preliminary physical address associated
with the logical address information from a first data struc-

15

20

30

40

45

60

2

ture of a plurality of address data structures; initiating a data
retrieval process for a first version of the data stored at the
preliminary physical address prior to confirming a final
physical address associated with the logical address infor-
mation; while continuing with the data retrieval process,
querying a second address data structure of the plurality of
address data structures to confirm the final physical address,
where the second address data structure is different from the
first address data structure; and when the final physical
address does not match the preliminary physical address,
terminating the initiated data retrieval process and initiating
a subsequent data retrieval process for a second version of
the data stored at the final physical address.

In sum, a storage module may be configured to initiate a
data retrieval process for data associated with logical
address information before the storage module confirms a
final physical address for the data. In doing so, execution of
read operations, including those performed in response to
host read commands and as well as internally-initiated read
operations, may be accelerated and overall efficiency for
executing read operations may be improved.

These and other embodiments, features, aspects and
advantages of the present invention will become better
understood from the description herein, appended claims,
and accompanying drawings as hereafter described.

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are incorporated in
and constitute a part of this specification illustrate various
aspects of the invention and together with the description,
serve to explain its principles. Wherever convenient, the
same reference numbers will be used throughout the draw-
ings to refer to the same or like elements.

FIG. 1 is a block diagram of an example storage system.

FIG. 2 is a schematic diagram of the mapping between
logical groups and metablocks.

FIG. 3 is a schematic diagram of an example primary and
secondary address data structure arrangement.

FIG. 4A is a block diagram of the storage module shown
in FIG. 1 embedded in a host.

FIG. 4B is a block diagram of the storage module shown
in FIG. 1 removably connected with a host.

FIG. 5 is a flow chart of a method of performing a read
operation.

FIG. 6 is a flow chart of a method of determining a final
physical address.

FIG. 7A is a block diagram of the example storage system
of FIG. 1, showing a secondary address data structure and
data stored at a preliminary physical address located in the
same die.

FIG. 7B is a block diagram of the example storage system
of FIG. 1, showing a secondary address data structure and
data stored at a preliminary physical address located in
different dies.

FIG. 8 is a block diagram of an example modular con-
figuration of the controller of the example storage system of
FIG. 1.

DETAILED DESCRIPTION

Various modifications to and equivalents of the embodi-
ments described and shown are possible and various generic
principles defined herein may be applied to these and other
embodiments. Thus, the claimed invention is to be accorded
the widest scope consistent with the principles, features, and
teachings disclosed herein.

US 9,436,615 B2

3

The present description describes a storage module that is
configured to initiate a data retrieval process for data stored
in a memory before the storage module confirms a final
physical address for the data associated. The data retrieval
process may be initiated in response to a host read request
received from a host. Alternatively, the data retrieval process
may be initiated as part of an internal background process of
the storage module.

FIG. 1 shows a block diagram of an example system 100
that includes a host system 101 and a storage module 102.
The host system 101 may be configured to store data into
and retrieve data from the storage module 102. The storage
module 102 may be configured to perform memory man-
agement functions that control and manage the storage and
retrieval of the data. As shown in FIG. 1, the storage module
102 may include a controller or control circuitry 110 and a
memory module 130. Depending on the configuration of the
storage module 102, the controller 110 and the memory
module 130 may be on the same or different substrates.

The controller 110 may include a processor or processor
circuit 112 that is configured to perform and/or control the
performance of at least some of the memory management
functions. The processor 112 may include a single processor
or a plurality of processors configured to perform various
types of processing, such as co-processing, multi-process-
ing, multi-tasking, parallel processing, remote processing,
distributed processing, or the like, in order to perform the
memory management functions. The processor 112 may be
a microprocessor, a microcontroller, an application specific
integrated circuit (ASIC), a field programmable gate array,
a digital logic digital circuit, other now known or later
developed circuitry having logical processing capability, or
combinations thereof. In addition or alternatively, the pro-
cessor may be configured to execute program instructions
that may be part of software, micro-code, firmware, stored
in hardware, or the like in order to perform at least some of
the memory management functions.

In addition, the controller 110 may also include a memory
interface 114 that interfaces with the memory module 130.
The controller 110 may also include a host interface 116 that
configures the storage module 102 operatively in commu-
nication with the host system 101. As used herein, the phrase
“operatively in communication with” could mean directly in
communication with or indirectly in communication with
through one or more components, which may or may not be
shown or described herein. The processor 112, through or
using the host interface 116, may receive host requests, such
as host read and write requests, from the host system 101,
and send, through or using the host interface 116, responses
to the host read and write requests to the host system 101.
Additionally, the host interface 116 may take any suitable
form, such as, but not limited to, an eMMC host interface,
a UFS interface, and a USB interface, as examples.

Also, some configurations of the controller 110 may
include controller memory 118, which may be separate or
“off-chip” from memory in the memory module 130, and
which may include one or more various types of memory
structures or technologies of volatile memory, non-volatile
memory, or combinations thereof. The processor 112 may
use or access the controller memory 118 to perform its
associated memory management functions. For example,
software and/or firmware including program instructions
may be stored in the controller memory 118, which the
processor 112 may execute to perform one or more memory
management functions. In addition or alternatively, data may

20

25

30

40

45

55

4

be temporarily stored in the controller memory 118 before
being stored in the memory module 130 or sent to the host
system 101.

The controller 110 may also include a firmware module
120. The firmware module 120 may include software and/or
a set of executable program instructions, which may be
stored in the controller memory 118 and/or which the
processor 112 may execute or use to perform one or more of
the memory management functions.

The memory module 130 may include memory 132
configured to store data or other information in the storage
module 102. The memory 132 may include a plurality of
memory elements or cells, each configured to store one or
more bits of data. In addition, the memory 132 may include
volatile memory, non-volatile memory, or combinations
thereof. In addition or alternatively, the memory 132 may
include a single type of memory (such as a single type of
volatile memory or a single type of non-volatile memory) or
different types of memory (such as different types of volatile
memory, different types of non-volatile memory, or combi-
nations thereof).

In addition, the memory 132 may be a single physical
space (such as a single die or a single chip) in which the
controller 110 may use the same bus or channel to access the
single physical space. Alternatively, the memory 132 may
include multiple, different physical spaces (such as multiple
dies or multiple chips) in which the controller 110 may use
different buses or different channels to access the different
physical spaces.

In addition, the memory 132 may have an organizational
arrangement or hierarchy under which the memory elements
or cells of the memory 132 may be organized. The controller
110 may be configured to store data and/or access stored data
in accordance with the organizational arrangement or hier-
archy.

For some example configurations of flash memory, the
memory elements may be divided or organized into blocks,
with each block containing the minimum number of memory
elements that may be erased together. Each block may be
further divided into a number of pages, with each page being
a unit of programming or reading. Each individual page may
further be divided into segments, with each segment con-
taining the fewest number of memory elements that may be
written at one time as a basic programming operation.
Additionally, for some example configurations, multiple
blocks and pages may be distributed across multiple arrays
and operated together as metablocks and metapages, respec-
tively. Alternatively, the distribution of blocks and pages
may be confined to a single array. Data may be stored in a
block and/or a metablock in various ways, including non-
contiguously (randomly) or contiguously. As used herein,
and unless otherwise specified, the terms “block™ and “meta-
block™ and the terms “page” and “metapage” may be used
interchangeably and/or referred to collectively as “meta-
block” and “metapage” respectively, without concern for
whether the block/metablock and page/metapage span a
single array or multiple arrays.

The memory elements may be configured as single-level
cells (SLCs) that store a single bit of data per cell, multi-
level cells (MLCs) that store multiple bits of data per cell
(e.g., two bits of data per cell), triple-level cells (TLCs) that
store three bits of data per cell, or combinations of SL.Cs,
MLCs, and TLCs. Accordingly, a block or page of memory
elements may respectively store a single block or page of
data or multiple blocks or pages of data, depending on
whether the memory elements are configured as SLCs,
MLCs, and/or TL.Cs. Whether a memory element is a SLC,

US 9,436,615 B2

5

a MLC, or a TLC may depend on the number of bits the
controller 110 determines to program into the memory
element. For example, the controller 110 may be configured
to program a single bit of data into a memory element, in
which case the memory element is configured as a SL.C.
Accordingly, each of the memory elements may be config-
ured in a SLC mode, a MLC mode, or a TLC mode, as
determined by how the controller 110 programs the respec-
tive memory elements.

In addition, for some example configurations, the memory
may include a single area. For other example configurations,
the memory 132 may be divided or separated into different
memory areas, including a main memory 134 and a second-
ary memory 136, as shown in FIG. 1. The main memory 134
and the secondary memory 136 may be different in that they
may be of different memory types, may be located in
different physical spaces, have different cell configurations,
or some combination thereof.

For some example flash memory applications, the sec-
ondary memory 136 may be a binary cache 136. The main
memory 134 may have a higher bit-per-cell storage density
than the binary cache 136. That is, the memory elements of
the main memory 134 may be configured as ML.Cs, whereas
the memory elements of the binary cache 136 may be
configured as SL.Cs. In alternative example configurations,
the memory elements of the main memory 134 may also be
configured as SL.Cs. In addition, the binary cache 136 may
be configured to allow for a finer granularity of writes than
for the main memory 134. The finer granularity may be more
compatible with the granularity of logical data units from a
host write request. In addition or alternatively, the main
memory 134 may be configured to store logical data units
sequentially, whereas the binary cache 136 may or may not
store logical data units sequentially. Accordingly, fragments
of data (e.g., less than a metablock or logical group of data)
may be stored in the binary cache 136. For some situations,
the data fragments may be subsequently reassembled in
sequential order in the blocks in the main memory 134.

The memory module 130 may further include logic cir-
cuitry 142 configured to control and/or manage the storage
of data in the memory. The logic circuitry 142 may provide
an interface between the controller 110 and the memory 132.
The logic circuitry 142 may control and/or manage the
storage of data in the memory 132 in response and/or
according to context instructions or commands, such as
sense, program, and/or erase commands, received from
and/or generated by the controller 110. The logic circuitry
142 may be configured to perform various memory man-
agement functions to control and/or manage the data stor-
age, including, but not limited to, addressing, data transfer,
sensing, row and column decoding, and/or gate biasing.
Additionally, the memory controller 142 may be imple-
mented in hardware, including one or more processors,
hardware logic, buffers, voltage generators, and/or other
circuitry to perform the functions of the memory controller
142.

The memory module 130 may further include sense
circuitry 144, which may include sense amplifiers config-
ured to sense data stored in the memory 132 and latches
configured to store the sensed data, which may then be
transferred to the controller 110.

FIG. 1 shows the controller 110 and the logic circuitry 142
as separate components of the storage module 102. How-
ever, for alternative example configurations, the logic cir-
cuitry 142 and/or the functions performed by the logic
circuitry 142 may be incorporated into the controller 110,

10

15

20

25

30

35

40

45

50

55

60

65

6

and the controller 110 may be configured to communicate
directly with the memory 132 and/or the sense circuitry 144.

The storage module 102 may also include a communica-
tions bus 146 that provides a communications link between
the controller 110 and the memory module 130. The com-
munications bus 146 may be used by the controller 110 and
the memory module 130 to communicate data, commands,
or other information or messages in order to execute host
requests or commands received from the host system 101,
such as host read and write requests.

When the storage module 102 receives a host read request
from the host system 101, the storage module 102 may be
configured to perform a read operation that includes a
plurality of processes in order to execute or carry out the
host read request. Such processes may include: address
translation; data retrieval; and host communication.

Address Translation

The host system 101 and the storage module 102 may use
different addressing schemes for managing the storage of
data. For example, when the host system 101 wants to write
data to the storage module 102, the host system 101 may
assign a logical address (also referred to as a logical block
address (LBA)) to the data. Similarly, when the host system
101 wants to read data from the storage module 102, the host
system 101 may identify the data it wants read by the logical
address. The host system 101 may utilize a logical address-
ing scheme in which a host file system maintains a logical
address range for all LBAs assigned or recognized by the
host system 101. In addition, for some example configura-
tions, the host system 101 may address data in units of
logical sectors. Accordingly, host read and write requests
may be requests to read and write a segment comprising a
string of logical sectors of data with contiguous addresses.

In contrast to the host system’s logical addressing
scheme, the storage module 102 may store and access data
according to a physical addressing scheme that uses physical
addresses different from the logical addresses assigned by
the host system 101 to store and access data. To coordinate
the host system’s logical addressing scheme with the storage
module’s physical addressing scheme, the storage module
102 may perform address translation in which the storage
module 102 translates a logical address included in a host
request to a physical address for storage or retrieval of data.
As previously described, the memory 132 may be organized
or arranged into metablocks. Accordingly, when the memory
device 102 performs address translation, the physical
address that the memory device 102 determines may identify
the metablock, the plurality of metablocks, and/or the physi-
cal sectors within a metablock, at which the data is stored.

For some example configurations, the logical addresses
(LBAs) may be grouped into logical groups (L.Gs), and the
logical groups may be mapped to the metablocks. FIG. 2
shows a schematic diagram of the mapping between logical
groups (LG) and metablocks (MB). Each logical group may
be mapped to a unique metablock. Accordingly, as shown in
FIG. 2, a metablock may have a N-number of physical
sectors for storing N-logical sectors of data associated with
a logical group. For some example configurations, the
logical sectors of data may be stored in the physical sectors
in contiguous and sequential logical order O, 1, . . . N-1.
Alternatively, N logical sectors of data may be stored
randomly or discontiguously in N physical sectors of a
metablock.

In addition, for some example configurations where data
is stored contiguously, there may be an offset between the
lowest address of a logical group and the lowest address of
the metablock to which it is mapped. In that case, logical

US 9,436,615 B2

7

sector addresses may wrap around as a loop from the bottom
back to the top of the logical group within the metablock.
For example, as shown in the bottom diagram of FIG. 2, a
metablock MB, may store data associated with a logical
sector k in its first physical sector 0. When the last logical
sector N-1 is reached, the logical sectors may wrap around
such that the first logical sector 0 is stored contiguously and
sequentially after logical sector 0, and the logical sector k-1
is stored in the last physical sector N-1. A page tag may be
used to identify any offset, such as by identifying the starting
logical sector address of the data stored in the first physical
of the metablock.

Referring back to FIG. 1, when the storage module 102
receives a host request, the controller 110 may perform an
initial parsing operation to determine a logical group number
and offset for the data in accordance with the mapping
shown and described with reference to FIG. 2. The controller
110 may then use the logical group number and offset to
identify the metablock and/or the physical sector within the
metablock at which the data is stored.

The metablocks in the main memory 134 may include or
qualify as intact blocks and update blocks. A metablock is as
an intact block when it completely and (and sometimes
sequentially) stores a logical group of data without any of
the data being obsolete (i.e., all N physical sectors of the
metapage store N logical sectors of data and none of the
sectors of data are obsolete). A metablock is an update block
when it stores one or more logical sectors of updated data.
When an update block is not completely filled with updated
data, the update block may be open or available to receive
further logical sectors of updated data associated with the
same logical group. When an update block is completely
filled, it may be closed or no longer available to receive
further logical sectors of updated data, at which point the
update block may become an intact block.

For example configurations of the memory 132 that
includes both the main memory 134 and the binary cache
136, data may be stored in binary cache blocks of the binary
cache 136 instead of in metablocks of the main memory 134.
The controller 110 may be configured to evaluate various
factors or criteria for determining whether certain data is
stored in the main memory 134 or in the binary cache 136.
One factor may include whether the data to be stored is a
data fragment. A data fragment may be data that has a size
that is less than a size of a metapage, such that the writing
of the data would constitute a partial-page write. To illus-
trate, suppose a metapage includes eight physical sectors. If
certain data to be written only spans two sectors, then that
data may be identified as a data fragment for storage in the
binary cache 136. Factors other than or in addition to the size
of the data may be used to determine whether data is stored
in the main memory 134 or the binary cache 136. For
example, if an update block currently exists for the data and
is available for storage of the data, even if the data qualifies
as a data fragment, the controller 110 may determine to store
the data in the available update block in the main memory
134 rather than in the binary cache 136.

For some example configurations, fragment headers may
be stored with associated data fragments in the binary cache
136. The fragment headers may include a logical group
number that identifies the logical group to which the asso-
ciated data fragment belongs, a sector offset that identifies a
particular sector within the logical group, a length identifier
that identifies a length of the associated data fragment, and
one or more overwrite indicators or flags that identify
whether the associated data fragment overwrites corre-
sponding data stored in an update block.

10

15

20

25

30

35

40

45

50

55

60

65

8

For some situations, in response to a host request to write
data, the controller 110 may store the data in both the main
memory 134 and the binary cache 136. For example, if the
data to be stored is greater than a metapage, the controller
110 may store a first portion having the size of a metapage
in an update block in the main memory 134, and a second,
remaining portion of the data in the binary cache 136. To
illustrate, suppose data to be written requires nine physical
sectors. The controller 110 may store eight of the nine
sectors of the data in an update block and the remaining
sector of data in the binary cache 136.

In addition or alternatively, the controller 110 may store
overlapping data in the main storage 134 and the binary
cache 136. As an illustration, suppose the controller 110
stores eight sectors of data in a metablock in the main
memory 134 in response to a first host write request.
Suppose further that the controller 110 receives a second
host write request for an update of two of the eight sectors.
The controller 110 may store the updated data as a data
fragment in the binary cache 136. As another illustration, the
controller 110 may receive a first host write request in which
two sectors of data are stored as a data fragment in the binary
cache 136. The controller 110 may then receive a second
host write request for storage of eight sectors, two of which
may be for an update of the two sectors of data stored in the
binary cache 136.

Alternatively to being stored in the memory 132, some
data may be stored in the controller memory 118. Such data
may include data that is temporarily stored in the controller
memory 118 before it is sent to either the memory 132 or the
host system 101 (e.g., the final destination address of the
data is not the controller memory 118), or data that is
intended to be permanently stored (e.g., its final destination
address is the controller memory 118).

In order to keep track of where in the storage module 102
data is stored, the storage module 102 may maintain a
directory system that maps the relationships or associations
between logical addresses and physical addresses. The
directory system may include a plurality of address data
structures (such as tables, listings, logs, or databases as
examples) that track and identify the logical-physical
address relationships or mappings. The plurality of address
data structures may include a primary address data structure
(also referred to as a Group Address Table (GAT)) and at
least one secondary address data structure. The controller
110 may access the primary and secondary data structures to
determine where in the storage module 102 the most recent
version of the data is stored.

The primary address data structure (GAT) may provide a
primary logical-physical address mapping for logical
addresses included in the logical address range recognized
by the host system 101. Various configurations of the
mapping for the GAT are possible. In one example configu-
ration for flash technology, the GAT keeps track of logical-
physical address mapping between logical groups of logical
sectors and corresponding metablocks. The GAT includes an
entry for each logical group, ordered sequentially according
to logical addresses. In addition, the GAT may be organized
into a plurality of GAT pages, with each GAT page including
entries identifying a metablock address for every logical
group.

The at least one secondary address data structure may
provide logical-physical address mapping for data fragments
stored in the binary cache 136, logical-physical address
mapping for changes to data, such as data stored in update
blocks, and/or some combination thereof.

US 9,436,615 B2

9

One example secondary address data structure, referred to
as GAT Delta, may track changes to entries and/or include
a listing of changed entries in the mappings of the GAT. As
previously described, when data is re-written, the new
version of the data may be written to another part of the main
memory 134, such as in an update block. GAT Delta may
map data stored in the update blocks with associated logical
groups. For some example configurations, GAT Delta may
be part of a Master Index Page (MIP) that, in addition to
GAT Delta, includes a Free Block List (FBL) and/or the
GAT. The Free Block List may be a list that identifies blocks
that are available for storage of data (e.g., for allocation as
an update block) and that may be later mapped to logical
groups.

Another secondary address data structure may be a Binary
Cache Index (BCI) that tracks data fragments in the binary
cache 136. The Binary Cache Index may include a plurality
of binary cache indices that associate or map the logical
groups to which the data fragments belong to the physical
locations or addresses in the binary cache 136 at which the
data fragments are stored. For some example configurations,
the controller 110 may query the BCI for a given data
fragment, and in response receive a pointer or other identi-
fier identifying a binary cache block and sector number
along with a length of the data fragment.

Other secondary address data structures may be possible.
For example, another secondary address data structure may
map data stored in the controller memory 118 with associ-
ated logical groups.

The primary and secondary address data structures may
be stored in any of the memories of the storage module 102,
including the controller memory 118, the main memory 134,
and the binary cache 136. In addition or alternatively, some
or all of the primary and secondary address data structures
may be stored external to the storage module 102, such as in
the host system 101. Additionally, for some example con-
figurations, at any given time or for any duration, copies of
one or more of the address data structures, or at least
portions of the address data structures, may be generated so
that for a given address data structure, there are two versions
stored in two different locations in the storage module 102.
To illustrate, for a given address data structure, one version
may be stored in the memory 132, either in the main memory
134 or the binary cache 136, and another may be stored in
the controller memory 118, such as in a RAM portion of the
controller memory 118. As another illustration, for a given
address data structure, one version may be stored external to
the storage module 102, and another version may be stored
internal to the storage module 102, such as in the controller
memory 118 or in the memory 132. For some example
configurations, a main or primary version of the address data
structure may be stored in the memory 132 or in the host
system 101, and when the controller 110 determines to query
or update the address data structure, the controller 110 may
create a copy or load a second version in the controller
memory 118. If any updates on the copy are made, the
version stored in the memory 132 may be similarly updated.
Various ways or locations in which the primary and second-
ary address data structures are stored may be possible.

FIG. 3 shows a schematic diagram of an example primary
and secondary address data structure arrangement for flash
memory. As shown in FIG. 3, a logical address range 302 for
all logical block addresses (LBAs) may be maintained in a
host file system utilized by the host system 101. These LBAs
may be grouped into logical groups (LGs) 304. As previ-
ously described, certain data fragments 308 associated with
logical groups 304 may be written into the binary cache 136

20

25

30

40

45

50

55

10

rather than to the main memory 134. For the data fragments
that 308 that are stored in the binary cache 136, binary cache
indices 306 may map the logical groups with which the data
fragments 308 are associated to the binary cache blocks 310
of the binary cache 136 in which the data fragments 308 are
stored. As indicated in FIG. 3, the binary cache indices 306
may be stored in the memory (MEM) 132, either in the main
memory 134 or in the binary cache 136. Additionally, a copy
of all or a portion of the binary cache indices, identified as
BCI cache 312 in FIG. 3, may be maintained (cached) in a
RAM portion 324 of the controller memory 118 due to
frequent use or recent use. FIG. 3 shows the copy of the
binary cache indices 312 maintained in the RAM 324
pointing to the data fragments 308 stored in the binary cache
blocks 310. The binary cache indices 306 stored in the
binary memory 132 may similarly point to data fragments
308 stored in the binary cache blocks 310.

The primary address data structure (GAT), which includes
GAT pages 314, may be stored in the memory 132. In
addition, a copy of some or all of the GAT pages 314 in
addition to GAT Delta, identified collectively as GAT page
cache 316 in FIG. 3, may be maintained (cached) in RAM
324. Also, for the example arrangement shown in FIG. 3,
GAT Delta may also be maintained in RAM 324, although
all or a portion of GAT Delta may be additionally or
alternatively stored in the main memory 134 for other
example arrangements. FIG. 3 shows the GAT pages and
GAT Delta 316 maintained in RAM 324 pointing to data
stored in update and intact blocks 318 of the main memory
134. The GAT pages 314 stored in the memory 132 may
similarly point to data stored in the update and/or intact
blocks 318.

At any given time, entries in the primary address data
structure (GAT) may not map a logical group to a physical
location in which data belonging to the logical group is
stored, and/or may not map a logical group to a physical
location in which the most recent version of the data
belonging to the logical group is stored. Where the primary
address data structure has a logical-to-physical mapping that
is out-of-date, at least one of the secondary address data
structures may provide the most up-to-date mapping. Addi-
tionally, the secondary address data structures may provide
one or more indications, such as through pointers or time
stamps, that indicate whether the logical-physical mapping
maps to the most recent version of the data.

So that the entries in the primary address data structure are
as up-to-date as possible, the controller 110 may be config-
ured to synchronize the mappings in the primary address
data structure with the mappings in the secondary address
data structures so that the primary address data structure
provides mappings to the most recent versions of the data.
However, at any given time, a host read request may be
received when the primary address data structure has not
been synchronized with the secondary address data struc-
tures.

In order to ensure that the data that is sent back to the host
is the most recent version, the controller 110 may be
configured to query all or at least one of the secondary
address data structures before retrieving data from the
memory module 132 and/or responding to the host. Upon
querying both the primary and the secondary address data
structures, the controller 110 may determine the logical-
physical mapping and/or retrieve the physical address that
identifies where the most recent version of the data is stored.
As such, by querying all or at least one of the secondary
address data structures in addition to the primary address

US 9,436,615 B2

11

data structure, the controller 110 may ensure that the most
recent version of the data is sent back to the host system 101.

Data Retrieval and Host Communication

Data retrieval may be performed by the storage module
102 in order for the controller 110 to retrieve the stored data
from the memory 132. After the controller 110 translates a
logical address to a physical address, the controller 110, in
conjunction with the logic circuitry 142 and/or the sense
circuitry 144, may perform a plurality of actions to retrieve
the data stored in the memory 132. Such actions may include
and/or be grouped into the following: pre-sensing, sensing,
and data transfer.

Pre-sensing actions may include any actions performed
following address translation that initiate the data retrieval
process and prepare the necessary components of the storage
module 102 for the subsequent sensing and data transfer
operations. One of the pre-sensing actions may include a
subsequent address translation process. For example, during
the initial address translation, the physical address that the
controller 110 identifies (e.g., a metablock number) may
constitute an abstract physical address. During the subse-
quent address translation process, the controller 110 may
convert the abstract physical address to an actual physical
address that identifies the physical aspects of the memory,
such as by plane, die, bank, physical block, offset, etc., in
which the data is stored.

In addition or alternatively, pre-sensing actions may
include context command generation. Context commands
may include commands that the controller 110 executes or
issues to the internal controller 142 in order to retrieve data
stored at a particular physical address. In an example con-
figuration, the controller 110 may generate at least one set of
context commands associated with the host read command,
with each set including a pair of a sense command and a data
transfer command. The sense command may instruct the
internal controller 130 to sense data stored at a particular
physical address identified in the sense command. The data
transfer command may be generated to cause the data that is
sensed to be transferred on the bus 146 to the controller 110.

Depending on the size of the data to be read and/or how
or where in the memory 132 the data is stored, a single pair
or multiple pairs of context commands may be generated,
issued, and/or executed. Additionally, if there are a plurality
of outstanding context commands to be issued, whether they
are for retrieving data for a single host read request or a
plurality of host read requests, the controller 110 may
perform sequencing in order to determine an order in which
the context commands are issued or executed.

In addition, prior to subsequent data translation and/or
context command generation, the controller 110 may per-
form one or more pre-sensing operations to ensure that the
various components involved in the subsequent sensing and
data transfer operations, including the memory interface
114, the internal controller 142, the communications bus
146, and/or buffers in the controller memory 118, are ready
and/or available to perform the sensing and data transfer
operations. During these pre-sensing operations, various
low-level work orders identifying sense operations, toggle
operations, chip enables, die selections, delays or other
timing between commands and/or data transfers, character-
istics of the data to be transferred (e.g., physical address
information, size of the data to be transferred), etc. may be
generated.

The above-described actions are merely exemplary and
other actions or operations may additionally or alternatively
be performed prior to sensing in order to prepare the various

10

15

20

25

30

35

40

45

50

55

60

65

12

components of the storage module 102 for subsequent
sensing and data transfer operations.

After any pre-sensing actions are performed, the control-
ler 110, via the memory interface 114, may issue one or more
sense commands on the bus 146 to the internal controller
142 to initiate data sensing. In response to receipt of a sense
command, the logic circuitry 142, using the sense circuitry
144, may perform a corresponding sense operation on the
memory 132. For flash memory applications, a typical flash
operation may include selecting a wordline corresponding to
a page of memory elements and performing current sensing
on bitlines through application of one or more bias voltages.
The data that is sensed upon performance of the sense
operation may be stored in latches within the sense circuitry
144.

After the data is sensed and stored in the latches, the
controller 110 may then execute the corresponding data
transfer command (otherwise referred to as toggling the bus
146), which may cause the sensed data stored in the latches
to be transferred on the bus 146 to the controller 110. As is
typical, after the data is transferred to the controller 110, one
or more post data transfer operations may be performed by
the controller 110 (such as decoding, error correction, and
data sequencing as examples) before the data may be
temporarily stored in a buffer or cache portion of the
controller memory 118 of the controller 110. After all or at
least some of the data associated with a host read request is
stored in the controller 110, the controller 110 may send the
data to the host and release any resources allocated to
executing the host read request.

For purposes of the present description, the pre-sensing,
sensing, and data transfer actions that are performed for the
controller 110 to retrieve data associated with a host read
request may be classified or grouped into data retrieval
initiation and data retrieval completion stages of the data
retrieval process. For some example configurations, the data
retrieval initiation stage may consist of the pre-sensing and
sensing actions, and the data completion stage may consist
of the data transfer actions. For other example configura-
tions, the data retrieval initiation stage may consist of the
pre-sensing actions, and the data completion stage may
consist of the sensing and data transfer actions. In other
words, the pre-sensing actions may be part of the data
retrieval initiation stage, the data transfer actions may be
part of the data retrieval completion stage, and the sensing
actions may be part of either the data retrieval initiation
stage or the data retrieval completion stage, depending on
the configuration.

As previously described, the controller 110 may be con-
figured to query all or at least one of the secondary address
data structures, in addition to querying the primary address
data structure, before retrieving data and/or sending the data
to the host system 101 in order to ensure that the data sent
back to the host system 101 is the most recent version of the
data. For some situations, the likelihood that the entries in
the primary address data structure are not up-to-date may be
relatively low. In other words, when the controller 110
queries the primary address data structure to retrieve a
physical address, it may be more likely than not that the
physical address that primary address data structure returns
identifies the physical location of the most recent version of
the data. Accordingly, overall efficiency for execution of
host read requests may be improved and execution of the
host read request may be accelerated where the controller
110 begins initiation of the data retrieval process before it
completes its query of the secondary address data structures
and confirms the final physical address for the data.

US 9,436,615 B2

13

In one example configuration, when the controller 110
receives a host read request identifying logical address
information, the controller 110 may query a first set of one
or more of the address data structures to obtain a preliminary
physical address associated with the logical address infor-
mation. The preliminary physical address may or may not
identify where the most recent version of data associated
with the logical address information is stored. That is, the
first set of address data structures may include an insufficient
number of address data structures for the controller 110 to
query in order for the controller 110 to know with a sufficient
degree of certainty whether or not the preliminary physical
address identifies the physical location where the most
recent version of the data is stored.

After obtaining the preliminary physical address, the
controller 110 may initiate the data retrieval process using
the preliminary physical address. Before sending data stored
at the preliminary physical address to the host system 101,
the controller 110 may determine or confirm a final physical
address that identifies where the most recent version of the
data is stored. To determine the final physical address, the
controller 110 may query a second set of the address data
structures. The second set of address data structures, in
combination with the first set, may provide a sufficient
number of address data structures for the controller 110 to
query in order for the controller 110 to know with a
predetermined degree of certainty whether or not the pre-
liminary physical address identifies the physical location
where the most recent version of the data is stored.

The query of the second set may return information that
identifies either a logical-physical address mapping that
maps to a second preliminary physical address, or that such
a logical-physical mapping (or a physical address associated
with the logical address information) does not exist in any of
the address data structures of the second set. Based on the
information returned from the query of the second set, the
controller 110 may determine whether the preliminary
physical address initially determined identifies the physical
location at which the most recent version of the data is
stored. In particular, if the query of the second set of address
data structures does not identify a logical-physical mapping
or physical address, then the controller 110 may determine
that the initial preliminary physical address identifies the
physical location in which the most recent version of the
data is stored.

Alternatively, if the query of the second set of address
data structures returns a second preliminary physical
address, then the controller 110 may determine whether the
initial preliminary physical address or the second prelimi-
nary physical address identifies the location where the most
recent version of the data is stored. The controller 110 may
be configured to do so in various ways. In one example
configuration, the mere return of the second preliminary
physical address may indicate that the second preliminary
physical address is where the most recent version of the data
is stored. In another example configuration, upon return of
the second preliminary physical address, the controller 110
may compare the second preliminary physical address with
the initial preliminary physical address. If the initial and
second preliminary addresses match, then the controller 110
may determine that the initial preliminary physical address
identifies the physical location in which the most recent
version of the data is stored, and as such is the final physical
address. Alternatively, if the initial and second preliminary
physical addresses do not match, then the controller 110 may

10

15

20

25

30

40

45

50

55

60

65

14

determine that the second preliminary physical address, and
not the initial preliminary physical address, is the final
physical address.

For some example configurations, a mismatch between
the second preliminary physical address and the initial
preliminary physical address may imply or indicate that the
second preliminary physical address addresses the most
recent version of the data. For other example configurations,
the address data structures may include additional informa-
tion or implement various mechanisms, such as pointers or
time stamps, to expressly identify whether the second pre-
liminary physical address identifies the physical location of
the most recent version of the data.

In addition, for situations where multiple address data
structures in a set map to overlapping data, the controller 110
may be configured to first determine which of the mappings
in the set identifies the physical location of the most recent
version of the data before determining the respective pre-
liminary physical addresses for that set. As an example
illustration, suppose GAT Delta and BCI are both included
in the second set and each has a logical-physical mapping
associated with the logical address information identified in
a host read request. From the query of the second set, the
controller 110 may first determine whether GAT Delta or
BCI identifies a physical address that locates the most recent
version of the data, and then use that address as the second
preliminary physical address.

As previously described, the controller 110 may initiate
the data retrieval process using the initial preliminary physi-
cal address prior to determining the final physical address. If
the controller 110 has completed performing the pre-sensing
actions but has not yet determined the final physical address,
then the controller 110 may issue the sense commands to the
internal controller 142 in order for the memory module 130
to begin sensing an initial version of copy of the data that is
associated with the initial preliminary physical address.
Alternatively, if the controller 110 has determined the final
physical address before or by the time that pre-sensing has
completed, then for some example configurations, the con-
troller 110 may check whether the preliminary physical
address initially is the final physical address before issuing
the sense commands. If it is, then the controller 110 may
proceed to issue the sense commands. If it is not, then the
controller 110 may terminate the data retrieval process for
the initial preliminary physical address and re-perform the
pre-sensing actions using the final physical address (in this
case the second preliminary physical address), and subse-
quently proceed with the sensing and data transfer pro-
cesses. For other example configurations, the controller 110
may proceed directly to issuing the sense commands asso-
ciated with the preliminary physical address without check-
ing and/or regardless of whether the final physical address is
confirmed. That is, for the other configurations, the control-
ler 110 may confirm whether the preliminary physical
address is the final physical address only after it issues the
sense commands.

For some example configurations, the controller 110 may
be configured to refrain from executing the data transfer
process until it confirms whether or not the preliminary
physical address is the final physical address. After making
the determination, if the initial preliminary physical address
is the final physical address, then the controller 110 may
transfer the sensed data associated with the initial prelimi-
nary physical address. Alternatively, if the controller 110
determines that the final physical address is the second
preliminary physical address, then the controller 110 may
re-perform data retrieval initiation using the second prelimi-

US 9,436,615 B2

15

nary physical address and subsequently proceed with the
sensing and data transfer processes for the second prelimi-
nary physical address.

For other example configurations, the controller 110 may
execute the data transfer process to retrieve data stored at the
initial preliminary physical address before confirming and/
or without regard as to whether the initial preliminary
physical address is the final physical address. For example,
after issuing the sense command to sense the data, the
controller 110 may be configured to execute the associated
data transfer command to retrieve the sensed data and store
the retrieved data internally in the controller memory 118.
Thereafter, the controller 110 may determine whether that
retrieved data is the most recent version of the data by
confirming the final physical address. If the retrieved data is
the most recent version, then the controller 110 may make
the retrieved data available for transfer to the host system
101. For example, using the host interface 116, the controller
110 may inform the host system 101 that the retrieved data
is ready for transfer and/or allow the host interface 116 to
access the retrieved data stored in the controller memory 118
and send the retrieved data to the host system 101. Alter-
natively, if the controller 110 determines that the initial
preliminary physical address is not the final physical
address, then the controller 110 may not make the retrieved
data available for transmission to the host system 101. For
example, the controller 110 may refrain from informing the
host system 101 that the retrieved data is ready for transfer
and/or not allow the host interface 116 to access the retrieved
data stored in the controller memory 118 and send the
retrieved data to the host system 101. Instead, the controller
110 may release any resources used to store the retrieved
data in the controller memory 118 and re-perform the data
retrieval process using the final physical address, which in
this case is the second preliminary physical address.

As previously described, the controller 110 may query a
first set of one or more address data structures to identify an
initial preliminary physical address, and query a second set
of address data structures to determine a final physical
address. For some example configurations, the first set may
include only the primary address data structure. For other
example configurations, the first set may include the primary
address data structure and at least one but less than all of the
secondary address data structures. The second set may
include one or more of the secondary address data structures
that are not included in the first set. For some example
configurations, the second set may include all of the sec-
ondary address data structures that are not included in the
first set. For other example configurations, the second set
may include less than all of the secondary address data
structures not included in the first set.

In one particular configuration, the first set of address data
structures may include only the primary address data struc-
ture (GAT), and the second set may include the master index
page (MIP) and the BCI, where the MIP includes cached
versions of the GAT and GAT Delta. In an alternative
configuration, the first set includes the GAT and the MIP, and
the second set includes the BCI. Other configurations or
combinations of configurations for the first and second sets
comprising some or all of the GAT, MIP, GAT Delta, and
BCI may be possible.

In addition, for some example configurations, the con-
troller 110 may be configured to query the first and second
sets of address data structures for read operations other than
those performed in response to receipt of a host read request.
One example read operation may include a background read
operation initiated internally by the controller 110 or another

10

15

20

25

30

35

40

45

50

55

60

65

16

component of the storage module 102, rather than in
response to receipt of a host read request. The background
read operation may be performed as part of a background
operation to move stored data to a different location in the
memory 132. Various reasons for moving stored data to a
different location may exist. For example, the background
read operation may be and/or be part of a memory recla-
mation operation, otherwise referred to as “garbage collec-
tion,” in which the controller 110 wants to free up storage
space and make available an area of the memory 132. To do
s0, the controller 110 may determine which of the data being
stored in that area is valid (i.e., the most recent version) and
which is obsolete (i.e., not the most recent version). Upon
making the determination, the controller 110 may make a
copy of the valid data and move the copy to a new storage
location. The original area may then be available for sub-
sequent write and/or programming operations.

Another background operation may include a scrubbing
operation in which the controller 110 determines that data
being stored in a current area should be moved to a new area
because the current area storing the data is defective or the
charge being stored to retain the data has degraded. For some
scrubbing operations, an error correction process may deter-
mine whether the data should be moved, such as if a bit error
rate (BER) of the data exceeds a threshold level. If so, then
the controller 110 may determine which of the data stored in
the current area is valid and which is obsolete before moving
the data to the new area. Background operations other than
memory reclamation (garbage collection) and scrubbing
operations may be possible.

During a background read operation, when the controller
110 determines to move data from a current memory area to
a new memory area, the controller 110 may identify logical
group information for the data stored in the current memory
area. The controller 110 may perform address translation to
identify one or more physical locations identifying where
the most recent version of the data is stored. For some
situations, all of the data stored in the current area may be
the most recent version. For other situations, some of the
data stored in the current area may be the most recent
version (i.e., valid), while other data stored in the current
area may not be the most recent version (i.e., obsolete).

To perform address translation and determine which of
the data is valid and which is obsolete, the controller 110
may query a first set of address data structures and a second
set of address data structures as previously described. In
particular, the controller 110 may query a first set of address
data structures to determine an initial preliminary physical
address associated with the logical group information. Upon
determination of the initial preliminary physical address, the
controller 110 may be configured to initiate the data retrieval
process for data stored at the initial preliminary physical
address. For some example configurations, the controller
110 may not retrieve the data and move the data until after
the controller 110 performs a query of the second set of
address data structures and confirms the final physical
address. If the controller 110 determines that the initial
preliminary physical address is the final physical address,
then the controller 110 may complete the data retrieval
process by retrieving the data and moving the data to a new
location. Alternatively, if the controller 110 determines that
a second preliminary physical address is the final physical
address, then the controller 110 may reinitiate the data
retrieval process and move data stored at the second pre-
liminary physical address to a new location in the memory
132.

US 9,436,615 B2

17

For other example configurations, the controller 110 may
retrieve data stored at the initial preliminary physical
address but not move the data to a new location in the
memory 132 until after the controller 110 performs the query
of the second set of address data structures and confirms the
final physical address. For still other example configura-
tions, the controller 110 may retrieve the data stored at the
initial preliminary physical address and move the data to a
new location in the memory 132 before confirming and/or
without regard as to whether the initial preliminary physical
address is the final physical address. After, if the controller
110 determines that the second preliminary physical address,
and not the initial preliminary physical address, is the final
physical address, then the controller 110 may retrieve data
stored at the second preliminary physical address and move
that data to a new location in the memory 132.

In addition, as previously described, the primary and
secondary address data structures may be stored in any of
various memory locations internal or external to the storage
module 102. If the primary or secondary address data
structure that the controller 110 wants to query is stored
external to the controller 110 (e.g., not in the controller
memory 118), then the controller 110 may first access or
retrieve the primary or secondary address data structure
from the location where it is stored and store it locally (e.g.,
in the controller memory 118) before the controller 110 can
parse it and determine a logical-physical address mapping.

FIGS. 7A and 7B are block diagram of the storage module
102 of FIG. 1, showing different situations where a second-
ary address data structure to be accessed by the controller
110 is stored in the memory 132, where data associated with
a preliminary physical address is also stored. For some
example configurations, the memory 132 may include mul-
tiple dies, such as a first die 702 and a second die 704. The
bus 146 (FIG. 1) may include multiple channels, such a first
channel 710 and a second channel 712, which the controller
110 may use to communicate with the multiple dies 702,
704. In particular, the controller 110 may use the first
channel 710 to communicate with the first die 702 and may
use the second channel 712 to communicate with the second
die 704. Using the multiple channels 710, 712, the controller
110 may concurrently communicate with the multiple dies
702, 704.

If a second address data structure 706 that the controller
110 wishes to query is stored in the memory 132, the
controller 110 may handle initiating the data retrieval pro-
cess for data stored at a preliminary physical address 708
and accessing the secondary address data structure 706
differently, depending on whether the secondary address
data structure 706 and the data stored at the preliminary
physical address 708 are stored in the same die and/or can
be accessed using the same channel, or whether the second-
ary address data structure 706 and the data stored at the
preliminary physical address 708 are stored on different dies
and/or can be accessed using different channels.

As shown in FIG. 7A, the secondary address data struc-
ture 706 and the data stored at the preliminary physical
address 708 may be stored on the same die, i.e., the first die
702, such that the controller 110 may be configured to
retrieve both the secondary address data structure 706 and
the data 708 using the first channel 710. To handle this
situation most efficiently, the controller 110 may be config-
ured to retrieve the secondary address data structure 706 first
before initiating the data retrieval for the data 708. In this
way, the controller 110 may begin querying the secondary
address data structure 706 while initiating the data retrieval
process for the data 708 and/or the controller 110 may not

10

15

20

25

30

35

40

45

50

55

60

65

18

have to wait for one or more parts of the data retrieval
process to finish before querying the secondary address data
structure 706.

In an alternative situation, as shown in FIG. 7B, the
secondary address data structure 706 and data stored at a
preliminary physical address 714 may be stored in different
dies. For example, the secondary address data structure 706
may be stored in the first die 702 and the data stored at the
preliminary physical address 714 may be stored in the
second die 704. In this situation, the controller 110 may
concurrently retrieve the secondary address data structure
706 stored in the first die 702 using the first channel 710 and
retrieve the data 714 stored in the second die 704 using the
second channel 712.

Referring to FIG. 8, the controller 110 may be configured
or arranged with a plurality of modules that are configured
to perform a read operation. In one example modular con-
figuration or arrangement shown in FIG. 8, the plurality of
modules may include a data read module 802, an address
lookup module 804, a host interface module 806, and a
memory interface module 808. The address lookup module
804 may be configured to perform the functions and/or
operations associated with the address translation process
for execution of a host read command. The data read module
802 may be configured to perform the functions and/or
operations associated with the data retrieval and host com-
munication processes for execution of a host read command.
The data read module 802 and the address lookup module
804 may communicate data and/or other information
between each other to perform their respective functions
and/or operations. In addition or alternatively, the data read
module 802 and/or the address lookup module 804 may
communicate with and/or use the host interface module 806,
which may be part of the host interface 116 (FIG. 1), to
communicate with the host system 101, and/or may com-
municate and/or use the memory interface module 808,
which may be part of the memory interface 114 (FIG. 1), to
communicate with the memory module 130. Other example
modular configurations or arrangements for the controller
110 may be possible.

In addition, each of the plurality of modules, including the
data read module 802, the address lookup module 804, the
host interface module 806, and the memory interface mod-
ule 808, may be hardware or a combination of hardware and
software. For example, each module may include an appli-
cation specific integrated circuit (ASIC), a field program-
mable gate array (FPGA), a circuit, a digital logic circuit, an
analog circuit, a combination of discrete circuits, gates, or
any other type of hardware or combination thereof. In
addition or alternatively, each module may include memory
hardware, such as a portion of the controller memory 118
(FIG. 1), for example, that comprises instructions executable
with the processor 112 (FIG. 1) or other processor to
implement one or more of the features of the module. When
any one of the module includes the portion of the memory
that comprises instructions executable with the processor,
the module may or may not include the processor. In some
examples, each module may just be the portion of the
controller memory 118 or other physical memory that com-
prises instructions executable with the processor 112 or
other processor to implement the features of the correspond-
ing module without the module including any other hard-
ware. Because each module includes at least some hardware
even when the included hardware comprises software, each
module may be interchangeably referred to as a hardware
module, such as the data read hardware module 802, the

US 9,436,615 B2

19

address lookup hardware module 804, the host interface
hardware module 806, and the memory interface hardware
module 808.

Referring to FIGS. 4A and 4B, for some example con-
figurations, the storage module 102 may be implemented
with the host system 101 by being an embedded device of
the host system 101 or by being removably connected with
the host system 101. FIGS. 4A and 4B show these imple-
mentations. As shown in FIG. 4A, the storage module 102
may be embedded in the host system 101. In addition to
embedding the storage module 102, the host system 101 may
have a host controller 420. That is, the host system 101 may
embody the host controller 420 and the storage module 102,
such that the host controller 420 interfaces with the embed-
ded storage module 102 to manage its operations. For
example, the storage module 102 can take the form of an
iNAND™ eSD/eMMC embedded flash drive by SanDisk
Corporation. The host controller 420 may interface with the
embedded storage module 102 using the host interface 116
(FIG. 1). Additionally, when the storage module 102 is
embedded in the host system 101, some or all of the
functions performed by the controller 110 in the storage
module 102 may instead be performed by the host controller
420.

The host system 410 can take any form, such as, but not
limited to, a solid state drive (SSD), a hybrid storage module
(having both a hard disk drive and a solid state drive), a
memory caching system, a mobile phone, a tablet computer,
a digital media player, a game device, a personal digital
assistant (PDA), a mobile (e.g., notebook, laptop) personal
computer (PC), or a book reader, as examples. As shown in
FIG. 4A, the host system 101 can include optional other
functionality modules 430. For example, if the host system
101 is a mobile phone, the other functionality modules 430
can include hardware and/or software components to make
and place telephone calls. As another example, if the host
system 101 has network connectivity capabilities, the other
functionality modules 430 can include a network interface.
These are just some examples, and other implementations
can be used. Also, the host system 101 can include other
components (e.g., an audio output, input-output ports, etc.)
that are not shown in FIG. 4A to simplify the drawing.

In an alternative configuration shown in FIG. 4B, instead
of being an embedded device in a host system, the storage
module 102 may have physical and electrical connectors that
allow the storage module 102 to be removably connected to
the host system 101 (having a host controller 445) via
mating connectors. As such, the storage module 102 may be
a separate device from (and is not embedded in) the host
system 101. In this example, the storage module 102 can be
a removable memory device, such as a Secure Digital (SD)
memory card, a microSD memory card, a Compact Flash
(CF) memory card, or a universal serial bus (USB) device
(with a USB interface to the host), and the host system 102
is a separate device, such as a mobile phone, a tablet
computer, a digital media player, a game device, a personal
digital assistant (PDA), a mobile (e.g., notebook, laptop)
personal computer (PC), or a book reader, for example.

Additionally, referring to FIG. 1, the memory 132 may be
a semiconductor memory device that includes volatile
memory devices, such as dynamic random access memory
(“DRAM”) or static random access memory (“SRAM”)
devices, non-volatile memory devices, such as resistive
random access memory (“ReRAM”), electrically erasable
programmable read only memory (“EEPROM”), flash
memory (which can also be considered a subset of
EEPROM), ferroelectric random access memory

5

10

15

20

25

30

35

40

45

50

55

60

65

20

(“FRAM”), and magnetoresistive random access memory
(“MRAM”), and other semiconductor elements capable of
storing information. Each type of memory device may have
different configurations. For example, flash memory devices
may be configured in a NAND or a NOR configuration.

The memory devices can be formed from passive and/or
active elements, in any combinations. By way of non-
limiting example, passive semiconductor memory elements
include ReRAM device elements, which in some embodi-
ments include a resistivity switching storage element, such
as an anti-fuse, phase change material, etc., and optionally a
steering element, such as a diode, etc. Further by way of
non-limiting example, active semiconductor memory ele-
ments include EEPROM and flash memory device elements,
which in some embodiments include elements containing a
charge storage region, such as a floating gate, conductive
nanoparticles, or a charge storage dielectric material.

Multiple memory elements may be configured so that they
are connected in series or so that each element is individu-
ally accessible. By way of non-limiting example, flash
memory devices in a NAND configuration (NAND
memory) typically contain memory elements connected in
series. ANAND memory array may be configured so that the
array is composed of multiple strings of memory in which a
string is composed of multiple memory elements sharing a
single bit line and accessed as a group. Alternatively,
memory elements may be configured so that each element is
individually accessible, e.g., a NOR memory array. NAND
and NOR memory configurations are exemplary, and
memory elements may be otherwise configured.

The semiconductor memory elements located within and/
or over a substrate may be arranged in two or three dimen-
sions, such as a two dimensional memory structure or a three
dimensional memory structure.

In a two dimensional memory structure, the semiconduc-
tor memory elements are arranged in a single plane or a
single memory device level. Typically, in a two dimensional
memory structure, memory elements are arranged in a plane
(e.g., in an x-z direction plane) which extends substantially
parallel to a major surface of a substrate that supports the
memory elements. The substrate may be a wafer over or in
which the layer of the memory elements are formed or it
may be a carrier substrate which is attached to the memory
elements after they are formed. As a non-limiting example,
the substrate may include a semiconductor such as silicon.

The memory elements may be arranged in the single
memory device level in an ordered array, such as in a
plurality of rows and/or columns. However, the memory
elements may be arrayed in non-regular or non-orthogonal
configurations. The memory elements may each have two or
more electrodes or contact lines, such as bit lines and word
lines.

A three dimensional memory array is arranged so that
memory elements occupy multiple planes or multiple
memory device levels, thereby forming a structure in three
dimensions (i.e., in the X, y and z directions, where the y
direction is substantially perpendicular and the x and z
directions are substantially parallel to the major surface of
the substrate).

As a non-limiting example, a three dimensional memory
structure may be vertically arranged as a stack of multiple
two dimensional memory device levels. As another non-
limiting example, a three dimensional memory array may be
arranged as multiple vertical columns (e.g., columns extend-
ing substantially perpendicular to the major surface of the
substrate, i.e., in the y direction) with each column having
multiple memory elements in each column. The columns

US 9,436,615 B2

21

may be arranged in a two dimensional configuration, e.g., in
an x-z plane, resulting in a three dimensional arrangement of
memory elements with elements on multiple vertically
stacked memory planes. Other configurations of memory
elements in three dimensions can also constitute a three
dimensional memory array.

By way of non-limiting example, in a three dimensional
NAND memory array, the memory elements may be coupled
together to form a NAND string within a single horizontal
(e.g., x-z) memory device levels. Alternatively, the memory
elements may be coupled together to form a vertical NAND
string that traverses across multiple horizontal memory
device levels. Other three dimensional configurations can be
envisioned wherein some NAND strings contain memory
elements in a single memory level while other strings
contain memory elements which span through multiple
memory levels. Three dimensional memory arrays may also
be designed in a NOR configuration and in a ReRAM
configuration.

Typically, in a monolithic three dimensional memory
array, one or more memory device levels are formed above
a single substrate. Optionally, the monolithic three dimen-
sional memory array may also have one or more memory
layers at least partially within the single substrate. As a
non-limiting example, the substrate may include a semicon-
ductor such as silicon. In a monolithic three dimensional
array, the layers constituting each memory device level of
the array are typically formed on the layers of the underlying
memory device levels of the array. However, layers of
adjacent memory device levels of a monolithic three dimen-
sional memory array may be shared or have intervening
layers between memory device levels.

Then again, two dimensional arrays may be formed
separately and then packaged together to form a non-
monolithic memory device having multiple layers of
memory. For example, non-monolithic stacked memories
can be constructed by forming memory levels on separate
substrates and then stacking the memory levels atop each
other. The substrates may be thinned or removed from the
memory device levels before stacking, but as the memory
device levels are initially formed over separate substrates,
the resulting memory arrays are not monolithic three dimen-
sional memory arrays. Further, multiple two dimensional
memory arrays or three dimensional memory arrays (mono-
lithic or non-monolithic) may be formed on separate chips
and then packaged together to form a stacked-chip memory
device.

Associated circuitry is typically required for operation of
the memory elements and for communication with the
memory elements. As non-limiting examples, memory
devices may have circuitry used for controlling and driving
memory elements to accomplish functions such as program-
ming and reading. This associated circuitry may be on the
same substrate as the memory elements and/or on a separate
substrate. For example, a controller for memory read-write
operations may be located on a separate controller chip
and/or on the same substrate as the memory elements.

One of skill in the art will recognize that this invention is
not limited to the two dimensional and three dimensional
exemplary structures described but cover all relevant
memory structures within the spirit and scope of the inven-
tion as described herein and as understood by one of skill in
the art.

FIG. 5 shows an example method 500 of a storage module
performing a read operation. At block 502, a controller of the
storage module may identify logical address information
associated with data to be read. The logical address infor-

10

15

20

25

30

35

40

45

50

55

60

65

22

mation may be included and/or associated with a host read
command received by the storage module via a host inter-
face. Alternatively, the logical address information may be
identified as part of a background operation performed by
the controller, as previously described.

At block 504, the controller may retrieve an initial pre-
liminary physical address (IPPA) associated with the logical
address information. To do so, the controller may query a
first set of one or more address data structures to obtain the
initial preliminary physical address (IPPA). As previously
described, each of the address data structures may provide a
logical-physical mapping that maps the logical address
information to a physical address identifying a physical
location in the storage module in which the data is stored.
The first set may include only a primary address data
structure. Alternatively, the first set may include the primary
address data structure and at least one but less than all
secondary address data structures. If an address data struc-
ture in the first set is not stored locally, the controller may
first retrieve it before querying it. Additionally, for some
example methods, before querying the first set, the controller
may perform a front-end parsing operation which translates
logical block addresses (LBAs) included in the host read
request into associated logical group and offset information,
as previously described.

At block 506, the controller may determine a final physi-
cal address (FPA), and at block 508, the controller may
initiate a data retrieval process to retrieve data stored at the
initial preliminary physical address. The controller may
initiate the data retrieval process at block 510 prior to
concluding the determination of the final physical address at
block 508.

FIG. 6 shows a flow chart of an example method of
determining the final physical address (block 506 in FIG. 5)
in more detail. At block 600, the controller may retrieve any
address data structures in the second set that are not stored
locally. As previously described, the controller may use
multiple channels to communicate with different parts (e.g.,
dies) of the memory. If the controller uses the same channel
to both retrieve an address data structure in the second set
and initiate the data retrieval process at block 508, then for
some example methods, the controller may first use the
channel to retrieve the address data structure before initiat-
ing the data retrieval process. For other example methods,
the controller may initiate the data retrieval process at block
508 first, and then retrieve the address data structure.

Alternatively, if the channel that the controller uses to
initiate the data retrieval process is not also used to retrieve
the address data structure, then the controller may initiate the
data retrieval process at block 508 without first using the
channel to retrieve the address data structure. If the control-
ler uses a different channel to access the address data
structure, then the controller may initiate the data retrieval
process at block 508 on one channel and retrieve the address
data structure at block 600 on another channel either con-
currently or perform one process before the other. Still
alternatively, if the address data structure is located external
to the storage module, such as in the host system, then the
controller may initiate the data retrieval process at block 508
and retrieve the address data structure at block 600 either
concurrently or one before the other.

At block 602, the controller may query the second set of
address data structures. The second set may include one or
more of the secondary address data structures that are not
included in the first set, which may include all or less than
all of the secondary address data structures that are not
included in the first set. In response to the query, the second

US 9,436,615 B2

23

set of address data structures may return information indi-
cating whether a second preliminary physical address
(SPPA) is included in the second set of address data struc-
tures and if so, whether the SPPA identifies a physical
location in which the most recent version of the data
requesting to be read is stored.

Atblock 604, if the query of the second set of address data
structures indicates that there is not a second preliminary
physical address in the second set, then at block 606, the
controller may determine that the final physical address is or
matches the preliminary physical address as initially deter-
mined at block 504 (FIG. 5). Alternatively, at block 604, if
the query of the second set of address data structures
returned a second preliminary physical address, then at
block 607, the controller may determine that the final
physical address is second preliminary physical address
without further analysis. That is, the return of the second
preliminary physical address in and of itself may indicate to
the controller that the final physical address is the second
preliminary physical address.

Alternatively, as denoted by dotted lines in FIG. 6, even
if the query of the second set of address data structures
returns a second preliminary physical address, the controller
may still perform further analysis to determine the final
physical address. In the alternative portion of the method, if
the query of the second set of address data structures returns
a second preliminary physical address at 604, then at block
608, the controller may compare the initial and second
preliminary physical addresses to determine whether they
match. If they do match, the method may proceed back to
block 606, where the controller may determine that the final
physical address is the initial preliminary physical address.
Alternatively, if they do not match, then at block 610, the
controller may determine that the final physical address is
the second preliminary physical address instead of the initial
preliminary physical address.

Referring back to FIG. 5, concurrent with determining the
final physical address at block 506, the controller may
initiate the data retrieval process using the initial preliminary
physical address at block 508. To initiate the data retrieval
process, the controller may begin performing pre-sensing
actions. At block 510, the controller may determine whether
the final physical address has been determined. For some
example methods, the controller may make the determina-
tion at block 510 only after completing all of the pre-sensing
actions. Alternatively, the controller may make the determi-
nation at block 510 before completing the pre-sensing
actions. That is, the controller may check whether the final
physical address has been determined any number of times
while performing and/or prior to completing the pre-sensing
actions. Still alternatively, the controller may skip the deter-
mination at block 510 and proceed directly to issuing sense
commands for the initial preliminary physical address at
block 512, as denoted by the dotted arrow connecting blocks
508 and 512.

If the controller does determine whether the final physical
address has been determined at block 510 and determines
that is has not, then the method may proceed to block 512,
where sensing may be performed to sense data associated
with the initial preliminary physical address. Alternatively, if
the final physical address has been determined, then at block
514, if the final physical address is the initial preliminary
physical address, then the method may proceed back to
block 512 where sensing may be performed to sense data
associated with the initial preliminary physical address.

10

15

20

25

30

35

40

45

50

55

60

65

24

Alternatively, if at block 514 the final physical address is not
the initial preliminary physical address, then the method
may proceed to block 516.

At block 516, the controller may terminate the current
data retrieval process for the initial preliminary physical
address and re-perform the pre-sensing actions using the
second preliminary physical address (SPPA) since the con-
troller determined that the final physical address is the
second and not the initial preliminary physical address. At
block 518, sensing may be performed to sense data associ-
ated with the second preliminary physical address. At block
520, the controller may perform data transfer to transfer the
data that was sensed and stored in latches in the memory
over to the controller via a communications bus. At block
522, after the data transfer operation, any post data transfer
operations may be performed. For example, if the read
operation is being performed in response to a host read
command, then the data may be communicated to the host
system to complete execution of the host read command. As
another example, if the read operation is being performed as
part of an internal background operation, then the post data
transfer operations may include writing the data to a new
location in the memory.

Referring back to block 512, after sensing data associated
with the initial preliminary physical address, the controller
may determine at block 524 whether the final physical
address has been determined. If it has, then at block 526, if
the final physical address is the initial preliminary physical
address, then the method may proceed to block 528, where
data transfer is performed to transfer the data associated with
the initial preliminary physical address sensed at block 512
to the controller and complete the data retrieval process.
After performing data transfer at block 528, the method may
proceed to block 522 where any post data transfer operations
may be performed. Alternatively, at block 526, if the final
physical address is not the initial preliminary physical
address, then the method may proceed to block 516, where
the controller re-performs pre-sensing actions using the
second preliminary physical address as the final address.

Referring back to block 524, after sensing data associated
with the initial preliminary physical address at block 512, if
the controller has not yet determined the final physical
address, then for some example methods, at block 530, the
controller may suspend any further data retrieval operations
until the final physical address is determined. In other words,
after the controller has issued sense commands to have data
associated with the initial preliminary physical address
sensed, the controller may refrain from executing any data
transfer commands or otherwise transferring the sensed data
until after it determines the final physical address at block
506. For other example methods, at block 524, even if
controller has not yet confirmed the final physical address or
regardless of whether the controller has confirmed the final
physical address, the method may proceed from block 524
directly to block 528, as denoted by the dotted arrow
connecting block 524 with block 528, where the controller
may transfer the sensed data associated with the initial
preliminary physical address at block 528. The method may
then proceed to block 538 where the controller waits until
the final physical address is determined, as denoted by the
dotted arrow connecting block 528 with block 530. Once the
final physical address is determined, then at block 526, if the
final physical address if the initial preliminary physical
address, then the method may proceed to block 522, as
denoted by the dotted arrow connecting block 526 with
block 522, where the controller performs post data transfer
operations. Alternatively, at block 530, if the controller

US 9,436,615 B2

25

determines that the final physical address is not the initial
preliminary physical address, the controller may remove any
data buffered as a result of the data transfer, free up any
resources used to buffer the data, and re-perform the data
retrieval process using the second preliminary physical
address at blocks 516-520.

It is intended that the foregoing detailed description be
understood as an illustration of selected forms that the
embodiments can take and does not intend to limit the claims
that follow. Also, some of the following claims may state
that a component is operative to perform a certain function
or configured for a certain task. It should be noted that these
are not restrictive limitations. It should also be noted that the
acts recited in the claims can be performed in any order—not
necessarily in the order in which they are recited. Addition-
ally, any aspect of any of the preferred embodiments
described herein can be used alone or in combination with
one another. In sum, although the present invention has been
described in considerable detail with reference to certain
embodiments thereof, other versions are possible. Therefore,
the spirit and scope of the appended claims should not be
limited to the description of the embodiments contained
herein.

I claim:

1. A storage system comprising:

at least one memory; and

control circuitry in communication with the at least one

memory, wherein the control circuitry, in order to

perform a read operation to read data stored in the at

least one memory, is configured to:

identify logical address information associated with the
data;

retrieve a first physical address associated with the
logical address information from a first address data
structure of a plurality of address data structures;

initiate a data retrieval process of the read operation for
a first version of the data stored at the first physical
address;

retrieve a second physical address associated with the
logical address from a second data structure of the
plurality of address data structure;

when the second physical address matches the first
physical address, complete the read operation using
the first version of the data; and

when the second physical address does not match the
first physical address, terminate the initiated data
retrieval process and initiate a subsequent data
retrieval process for a second version of the data
stored at the final physical address.

2. The storage system of claim 1, wherein the first address
data structure comprises a primary address data structure.

3. The storage system of claim 1, wherein the plurality of
address data structures comprises a primary address data
structure and a plurality of secondary address data struc-
tures, wherein the first address data structure comprises the
primary address data structure or a first secondary address
data structure of the plurality secondary address data struc-
ture, and wherein the second address data structure a second
secondary address data structure of the plurality of second-
ary address data structures.

4. The storage system of claim 1, wherein the first
physical address comprises a first preliminary physical
address, and wherein the control circuitry is further config-
ured to:

determine that the second physical address matches the

first preliminary address when the query of the second
address data structure returns either mapping informa-

10

15

20

25

30

35

40

45

50

55

60

65

26

tion identifying that the second address data structure
does not have a logical-physical address mapping asso-
ciated with the logical address information or a second
preliminary physical address that matches the first
preliminary physical address; and

determine that the second physical address does not match

the first preliminary physical address when the query of
the second address data structure returns the second
preliminary physical address and the second prelimi-
nary physical address does not match the first prelimi-
nary physical address.

5. The storage system of claim 1, wherein the at least one
memory comprises a first memory and a second memory, the
first memory configured with a higher bit-per-cell storage
density than the second memory,

wherein the first address data structure provides logical-

physical address mapping for the first memory, and
wherein the second address data structure provides logi-
cal-physical address mapping for the second memory.

6. The storage system of claim 1, wherein the second
address data structure tracks changes to entries in the first
address data structure.

7. The storage system of claim 1, wherein the at least one
memory comprises a local memory that is internal to the
controller, and wherein the second address data structure
identifies whether a most recent version of the data is stored
in the local memory.

8. The storage system of claim 1, wherein the control
circuitry is further configured to:

communicate with the at least one memory using a

plurality of different channels;

retrieve the second address data structure before initiating

the data retrieval process when the control circuitry
uses a same channel of the plurality of different chan-
nels to retrieve the second address data structure and
initiate the data retrieval process.

9. The storage system of claim 1, wherein the control
circuitry is further configured to:

concurrently initiate the data retrieval process using a first

channel and retrieve the second address data structure
using a second channel.

10. The storage system of claim 1, wherein the control
circuitry is further configured to receive, from a host system,
a host read request identifying the logical address informa-
tion,

wherein when the second physical address matches the

first physical address, the control circuitry is further
configured to send the first version of the data to the
host system to complete the read operation.

11. The storage system of claim 1, wherein the read
operation comprises a background read operation, wherein
the control circuitry is further configured to: identify the
logical address information as part of the background read
operation, and send the data to a new location in the at least
one memory to complete the background read operation.

12. The storage system of claim 1, wherein one or more
of the at least one memory comprises three-dimensional
memory.

13. The storage system of claim 1, wherein the control
circuitry is on the same substrate as memory elements of the
at least one memory.

14. The storage system of claim 1, wherein the control
circuitry is further configured to confirm a final physical
address associates with the logical address information
based on the retrieval of the second physical address from
the second data structure.

US 9,436,615 B2

27

15. The storage system of claim 14, wherein the control
circuitry is further configured to send to the at least one
memory one or more sense commands that instruct the at
least one memory to sense the first version of the data stored
at the first physical address before confirming the final
physical address.

16. The storage system of claim 14, wherein the control
circuitry is further configured to:

confirm the final physical address prior to completion of

the data retrieval process for the first version of the data
at the first physical address.

17. The storage system of claim 14, wherein the control
circuitry is further configured to:

complete the data retrieval process for the first version of

the data at the first physical address prior to confirma-
tion of the final physical address.

18. A method of accelerating a logical-to-physical address
translation, the method comprising:

performing in a storage system having at least one

memory:

receiving, from a host system, a host request identify-
ing logical address information for data stored in the
at least one memory;

reading a preliminary physical address associated with
the logical address information from a first data
structure of a plurality of address data structures;

initiating a data retrieval process for a first version of
the data stored at the preliminary physical address
prior to confirming a final physical address associ-
ated with the logical address information;

while continuing with the data retrieval process, que-
rying a second address data structure of the plurality
of address data structures to confirm the final physi-
cal address, the second address data structure differ-
ent from the first address data structure; and

when the final physical address does not match the
preliminary physical address, terminating the initi-
ated data retrieval process and initiating a subsequent
data retrieval process for a second version of the data
stored at the final physical address.

19. The method of claim 18, wherein the first address data
structure comprises a primary address data structure, and the
second address data structure comprises a secondary address
data structure.

20. The method of claim 18, wherein the preliminary
physical address comprises a first preliminary physical
address, and wherein the method further comprises:

20

25

30

35

40

45

28

in the storage system:

determining that the final physical address matches the
first preliminary address when querying the second
address data structure returns either mapping infor-
mation identifying that the second address data struc-
ture does not have a logical-physical address map-
ping associated with the logical address information
or a second preliminary physical address that
matches the first preliminary physical address; and

determining that the final physical address does not
match the first preliminary physical address when the
second address data structure returns the second
preliminary physical address and the second prelimi-
nary physical address does not match the first pre-
liminary physical address.

21. The method of claim 18, wherein the at least one
memory comprises a first memory and a second memory, the
first memory configured with a higher bit-per-cell storage
density than the second memory,

wherein the first address data structure provides logical-

physical address mapping for the first memory; and
wherein the second address data structure provides logi-
cal-physical address mapping for the second memory.

22. The method of claim 18, wherein the second address
data structure tracks changes to entries in the first address
data structure.

23. The method of claim 18, further comprising:

retrieving, with the controller, the second address data

structure using a channel before initiating the data
retrieval process using the channel.

24. The method of claim 18, further comprising:

concurrently initiating the data retrieval process using a

first channel and retrieving the second address data
structure using a second channel.

25. The method of claim 18, further comprising:

in the storage system:

confirming the final physical address prior to complet-
ing the data retrieval process for the first version of
the data at the preliminary physical address.

26. The method of claim 18, further comprising:

in the storage system:

completing the data retrieval process for the first ver-
sion of the data at the preliminary physical address
prior to confirming the final physical address.

#* #* #* #* #*

